
Analyzing Android Applications for Specifications and

Bugs

APPROVED BY

SUPERVISING COMMITTEE:

Dr. Wei Le, Supervisor

Dr. Matthew Fluet, Reader

Dr. Hans-Peter Bischof, Observer

Analyzing Android Applications for Specifications and

Bugs

by

Danilo Dominguez, B.E.

THESIS

Presented to the Faculty of the Golisano College of Computer and

Information Sciences

Rochester Institute of Technology

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

Rochester Institute of Technology

May 2013

Acknowledgments

I wish to thank my advisor Dr. Wei Le for all her support to finish

this work and the rest of my committee, Dr Matthew Fluet and Dr. Hans-

Peter Bischof, for their consideration on helping me in this thesis. In addition,

I would like to thank my family and my fiancee, Dayiris, for their support

during the whole time I have been far from home.

iii

Abstract

Analyzing Android Applications for Specifications and

Bugs

Danilo Dominguez, M.S.

Rochester Institute of Technology, 2013

Supervisor: Dr. Wei Le

Android has become one of the leader operating systems for smart-

phones. Moreover, Android has a big community of developers with over

696500 applications on its market. However, given the complexity of the sys-

tem, bugs are very common on Android applications–such as security vulner-

abilities and energy bugs. Given the architecture of Android, current static

analysis tools are not suitable for Android applications.

In this thesis, two approaches to analyze Android applications are stud-

ied. The first approach is an intra-component analysis that take take in ac-

count just the lifecycle of the components to define control flow of the appli-

cations. This approach is evaluated applying a specification miner for energy

related specifications on 12 applications from the Android market. We were

able to mine 91 specifications on all the applications and 41 of them were

iv

validated. For 50% of the applications analyzed, the analysis had less than

40% of false positives specifications. However, for the rest of the applications,

the interaction between components was a important factor that increased the

false positives.

Therefore, the second approach is an inter-component approach that

takes in account both, the lifecycle of components and interaction between

components to define the control flow of Android applications. We evaluate

the approach checking the percentage of code coverage on 8 applications from

the Google market. The results are promising with an average coverage of 67%.

In addition, we were able to identify bugs related to violations of constraints

regarding inter-component interactions.

v

Table of Contents

Acknowledgments iii

Abstract iv

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

Chapter 2. Background and Related Work 5

2.1 Background . 5

2.1.1 Android Overview . 5

2.1.2 AndroidManifest, Intent and Intent Filters 9

2.1.3 Interaction between components 10

2.1.4 Energy related API in Android 12

2.1.5 Control Flow Graph . 13

2.2 Related Work . 13

2.2.1 Security Analysis using Program Analysis for Android . 13

2.2.2 Energy Related Analysis 15

2.2.3 Specification Mining . 16

2.2.4 Modeling Event-driven Systems 17

Chapter 3. Mining Energy Specifications (E-Specs) and Energy
Bugs (E-Bugs) 18

3.1 Modeling Intra-Component Control Flow 18

3.2 Specification Miner . 19

3.3 Post-Processing . 21

3.4 Implementation . 21

vi

3.4.1 Getting Intermediate Representation of Android Appli-
cations . 21

3.4.2 Optimizations . 22

3.4.3 Seed Classes from the Android API 23

3.5 Experimental Results . 25

3.6 Conclusion . 31

Chapter 4. Building a Representation for Analyzing Android
Applications 33

4.1 Motivation . 33

4.2 Modeling Inter-Component Control Flow 34

4.3 Modeling Android using Event-driven Finite State Machines . 35

4.3.1 External Signals . 36

4.3.2 Internal Signals . 36

4.3.3 How External and Internal Signals are treated in our model 37

4.4 Models for Components . 38

4.4.1 Modeling Activities . 38

4.4.1.1 General Model 41

4.4.2 Modeling Services . 44

4.4.2.1 General Model 48

4.4.3 Modeling Broadcast Receivers 51

4.5 Representation . 52

4.6 Construction of the AIG . 53

4.7 Experimental Results . 55

4.8 Conclusion . 58

Chapter 5. Conclusions and Future Work 59

Bibliography 61

vii

List of Tables

3.1 Benchmarks . 26

3.2 General Specification Mining Results 27

3.3 False Positives for the Specifications 30

4.1 Inter-component analysis results 56

viii

List of Figures

2.1 Stack of activities for a process [5] 6

2.2 Activity lifecycle [1] . 7

2.3 Service lifecycles [4] . 8

2.4 Inter-component method calls 11

3.1 Framework . 19

3.2 CFG example for linear marker 23

3.3 Source Code example for linear marker 24

3.4 Performance: No. of classes vs. Analysis time 27

3.5 Source Code . 28

3.6 Example of results . 29

4.1 Inter-component specification 34

4.2 Activity Launch Task State Machine 39

4.3 startActivity from Activity . 39

4.4 Pause and Stop Activity . 40

4.5 Restart Activity . 40

4.6 Destroy Activity . 41

4.7 General Model for Activity . 41

4.8 startService when service is not running 45

4.9 startService when service is bound 45

4.10 stopService when service is Started 46

4.11 stopService when service is Started and Bound 46

4.12 bindService when service is not running 46

4.13 bindService when service is started 47

4.14 General Model for Service . 48

4.15 BroadcastReceiver Task State Machine 51

4.16 Activity used to build an AIG 54

ix

4.17 Example of an AIG . 56

4.18 Sipdroid 5.7 helper function to create intents 57

x

Chapter 1

Introduction

Android is an operating system developed by Google that targets mo-

bile devices. It has become the most used platform around the world with

over 400 million devices activated and another 1 millions activations every

day [2]. In addition, the marketplace has over 10 million application pur-

chases since 2012 [11], with over 696500 applications. These numbers have

called the attention of hundreds of programmers around the world that see

Android application development as a profitable market. Programmers nor-

mally use the Android SDK to develop, debug, deploy and launch Android

applications directly to the market. This SDK provides an application pro-

gramming interface (API) that let programmers’ code interact with the system

using the Java programming language for the development.

Moreover, it is well known that nowadays almost every piece of soft-

ware uses a third party API. Therefore, one of the main sources of software

bugs is the misuse of APIs [45]. In many cases, the misuse of APIs is due

to the lack of documentation or incorrect documentation regarding the API

implementation. Consequently, programmers can easily make false assump-

tions or try to find the correct implementation in other sources such as forums

1

or related websites leading to software bugs. Also, the Android system has

an event-driven architecture which uses on a set of components to represent

the behavior of applications. Therefore, in order to develop and reason about

Android applications, programmers must understand the functionality of each

component, how each component interacts with the system, and how different

components interact with each other.

Along with all the complexity that programming with an API carries–

graphical user interface (GUI), networking, etc.– programming for mobile de-

vices adds more complexity. For instance, power consumption, memory con-

straints and CPU power constraints are some aspects programmers must take

in account at any time during the development of an Android application

(these constraints are faced by programmers of embedded systems). There-

fore, mobile devices’ programmers of Android applications face problems seen

by desktop and server computer programmers and problems seen by embedded

system programmers.

To illustrate these complexities, let us use power consumption as ex-

ample. It is well known that one of the main problems in smartphones is their

power consumption. This can be due to the complexity of some computations,

networking communication, the use of the sensors and also the screen of the

device. That is why, systems such as Android have introduced mechanisms to

save energy. For instance, Android enforces strict power policies to keep every

sensor and CPU off (or in an idle state) unless an application tells the OS to

keep the component on [43]. However, the misuse of these mechanisms has

2

led programmers introduce a new kind of energy bug: no-sleep bugs. These

kind of bugs and the majority of the bugs related to programming with Java

are inherits by Android applications. Therefore, program analysis tools can

be helpful for Android programmers.

However, given the Android’s architecture and its API, current Java

tools– such as FindBugs [9] and JLint [10]–are not very suitable for Android

application. One of the main challenges to analyzed Android applications is

their event-driven architecture. In contrast to most of the Java applications,

Android applications does not have a single entry point. Moreover, interactions

with the environment (user and network and sensor events) make the analysis

and development of Android application a very complex task. There are other

explicit system calls that can change the control flow in an Android application

that tools for analysis of Java applications does not take in account. Therefore,

before applying any kind of analysis on Android applications, the Android

system must be modeled. Then, this model can be used to generate a more

accurate representation of the execution of an Android application and how

the control of execution flow.

In this thesis two approaches to model and analyze Android applica-

tions were designed and implemented. The first approach is an intra-component

analysis that take take in ac- count just the lifecycle of the components to de-

fine control flow of the applications. This approach is evaluated applying a

specification miner for energy related specifications on 12 applications from the

Android market. We were able to mine 91 specifications on all the applications

3

and 41 of them were validate. For 5040the interaction between components

was a important factor that increased the false positives. Therefore, the second

approach is an inter-component approach that takes in account both, the life-

cycle of components and interaction between components to define the control

flow of Android applications. We evaluate the approach checking the percent-

age of code coverage on 8 applications from the Google market. The results

are promising with an average coverage of 67%. In addition, we were able

to identify bugs related to violations of constraints regarding inter-component

interactions.

4

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Android Overview

Android is an operating system based on the Linux kernel developed

by Google, primarily targeting mobile devices. It offers an API that let pro-

grammers develop third party applications to run in the phone–with the API

programmers can access the different sensors, cameras and other components

the devices have. Each application runs on its own Linux user ID with its own

virtual machine (VM) [3]. Google developed its own virtual machine (Dalvik

VM) which runs different bytecode to the bytecode run by the Oracle Java

Virtual Machine.

Android applications are composed by four main components: Activ-

ity, Service, BroadcastReceiver and ContentProvider. Activity classes must

be subclasses of android.app.Activity (and subclasses declared in the Android

API), services from the class android.app.Service or android.app.IntentService,

content providers from android.content.ContentProvider and broadcast re-

ceivers from the class android.app.BroadcastReceiver. Following a description

of each component is presented.

5

Activity

An activity provides an user interface that let users interact with an appli-

cation [3]. In Android each window can be taken as one activity. Moreover,

activities can call other activities from the same application and also from

other applications. For example, when an user opens a chat application, the

application shows a list of friends available for chatting. If the user tabs on

the name of the friend, the system will stop the activity that list the friends

and start an activity that let the user chat with the particular friend that was

selected.

Figure 2.1: Stack of activities for a process [5]

All the activities for a particular process are stored in an stack (in

memory) and every time a new activity is started from another activity, the

caller activity is stopped, and the new activity is launch and put at the top

of the stack. If the user clicks that back button, the system stops the activity

at the top of the stack, remove it and restart the activity that is now at the

top of the stack–if there are no more activities, the system goes to the home

6

screen (see figure 2.1).

Figure 2.2: Activity lifecycle [1]

When the activity is launched, stopped or restart by the system, the

system notifies of these changes using lifecycle callback methods [1]. Figure 2.2

shows the lifecycle for activities and list the activities’ callback methods. These

lifecycle callback methods are vital for registering and releasing resources the

applications need.

Service

In contrast to activities, which normally offer a user interface to interact with

7

(a) Service lifecycle for startService (b) Service lifecycle for bindService

Figure 2.3: Service lifecycles [4]

the user in the foreground, a service is used for long-running tasks that are

executed in the background [3]. Services are normally started by activities,

broadcast receivers or other services and they can be called using two different

inter-component method calls (each form has a different lifecycle):

• startService: if the service is started, it runs in the background without

having any dependency to other component. Figure 2.3a shows the life-

cycle of a service when it is started. When a service is started it can be

stopped by calling the inter-component method call stopService or if the

service calls the method stopSelf. In case the service is an IntentService,

the callback method onHandleIntent is called as well.

8

• bindService: when a service is bound, it is normally called to perform

a task that is delegated by the caller component which requires some

interaction from the component called. Multiple components and ap-

plication can bind the same service, but the service will run until there

are no more components bound to it [4] (the caller component must call

unbindService to unbind it). Figure 2.3b shows the lifecycle for services

that are bound.

BroadcastReceiver

A broadcast receiver is used to receive notifications mostly from the system

but also from applications [3]. When the brodcast receivers gets a notification,

the callback method onReceive is executed. After this callback finishes, the

life the component finishes as well (it is not stored in memory as activities).

ContentProvider

Content providers are used as databases of applications and are normally used

if an application wants to share some data to other applications–although there

is no any constraint if they are used in the same application which declare it.

2.1.2 AndroidManifest, Intent and Intent Filters

The file where permissions, components and dependencies of libraries

are declared is AndroidManifest.xml. The programmer can also declare the

Java package for the application. Following, some of the most important

components of this file are described.

9

IntentFilter

From the four main components, activities, services and broadcast receivers are

called through objects of type Intent–this objects describes the components

to be called. In the AndroidManifest.xml each component declared, can have

zero or more intent filters. Intent filters are use to define the capabilities of the

components and what kind of intents they can receive. Therefore, a component

can have more than one intent filter if the programmer wants the component

to be executed by different kind of intents.

When an application uses a inter-component method call–such as start-

Service or sendBroadcast for broadcast receivers–the description of the target

components is stored in an Intent object. There are two kind of intents:

explicit and implicit intents. Explicit intents has the component’s name it

targets, whereas implicit intents contains general information of the object(s)

it wants to target. The target components are matched by the system based

on the intent filters declared by each components across all the applications

installed. In a case where more than one activity match the intent sent, the

system prompts a list of the activities matched in order to let the user choose

which activity to execute. For services and broadcast receivers, there is not

any interaction from the user.

2.1.3 Interaction between components

There are different interactions that Android components can have.

Normally, activities, services, and broadcast receivers are activated asyn-

10

chronously using inter-component method calls and Intent objects.

Figure 2.4: Inter-component method calls

Android provides specific inter-component method calls that permit

the interaction between different components. Figure 2.4 shows these method

calls and what particular components can use them. Following, we list the

inter-component method calls categorized by component:

• Activity: startActivity, startActivities, startActivityForResult.

• Service: startService, stopService, bindService, unbindService.

• BroadcastReceiver: sendBroadcast, sendBroadcastAsUser, sendSticky-

Broadcast, sendStickyBroadcastAsUser, sendOrderedBroadcast, sendOrdered-

11

BroadcastAsUser, sendStickyOrderedBroadcast, sendStickyOrderedBroad-

castAsUser.

All these system calls are handled by the class android.app.ActivityThread.

The implementation of the class android.app.ActivityThread uses a queue task

within a loop to handle all inter-component method calls and other actions

posted by the system. For instance, when the application starts a service, the

service is not started immediately after the call (startService(Intent intent)).

Contrary, it is posted to the queue task and the actions can be performed in

the next iterations of the loop. Therefore, if we want to create a control flow

graph that is closer to the real execution of the system, we have to model how

the class android.app.ActivityThread executes the different tasks.

2.1.4 Energy related API in Android

As it was mentioned, Android enforces strict energy policies to re-

duce power consumption. Normally device components such as CPU, the

Wifi antenna and other sensors go to an idle state when the phone goes to

sleep. Nevertheless, there are some mechanisms that let third party appli-

cations maintain awake these components even when the phone is sleeping.

One of these mechanisms is called wake locks. For instance, the class an-

droid.os.PowerManager.WakeLock can be used to maintain the CPU and even

the screen on when they are supposed to be off. This mechanism is very im-

portant for applications such as music players that keep playing music even

when the phone is supposed to be sleeping. When a third party application

12

wants stop a component to go to an idle state, the application must acquire

a wake lock on the device component. Once the application is done with its

tasks, it must release the lock on the device component.

However, given the concurrent, event-driven Android’s architecture,

programmers make mistakes on releasing the locks for all the possible paths

the application can have. Therefore, the device component will not go to idle

state, causing a great amount of energy consumption. This kind of bugs are

called no-sleep bugs [44]. Moreover, the misused of these API can lead to

energy bugs that cause a great amount of power consumption.

2.1.5 Control Flow Graph

In this thesis, Control Flow Graphs (CFG) will be used to perform

different kind of analysis. A CFG is a directed graph the represents all the

possible execution paths that an application can have. In this graph nodes are

basic blocks and edges represents control flow from one basic block to another

[14]. A CFG is build for a particular method (intra-procedural), wheres an

Inter-procedural Control Flow Graph (ICFG) takes in account methods calls

and transfers the control to other methods (inter-procedural).

2.2 Related Work

2.2.1 Security Analysis using Program Analysis for Android

Security is another important problem that smartphones users face.

Android, giving the openness of its market, is one of the most affected mobile

13

operating systems by security vulnerabilities. That is why, security is one of

the areas that has more research work. Researchers apply techniques such

as static analysis, dynamic analysis and testing to discover different kind of

security vulnerabilities in Android applications.

Permissions

Felt, et al. [24] build the tool Stowaway to detect if an Android application

is overprivileged (declares more permissions in the AndroidManifest.xml file

than it needs). They first map all API calls to permissions required by these

calls and then use this map to detect all the permissions that the Android

application needs. These permissions are checked against the ones declared by

the developers in the AndroidManifest.xml.

Security Vulnerabilities

Several efforts has been done to identify vulnerabilities regarding privilege

escalation attacks including [19, 20] and also proposing new techniques [47].

Moreover, privacy leaking is another problem that has been thoroughly stud-

ied by [21, 29, 33, 37, 60, 61]. Other approaches such as model checking (SMT

solvers) have been used to identify logical security errors in Android applica-

tions as well [38].

Malware Detection

Most of the previous approaches try to identify security vulnerabilities on

Android applications. However, RiskRanker [30] and DroidMat [58] try to

identify malicious behaviors directly on applications from the market using

static analysis. Moreover, Alazab et al. [13] develop Droidbox to classify be-

14

nign and malicious applications using dynamic analysis. Different techniques

are also applied for malware detection. For instance, Shabtai et al. [49] use

machine learning to identify malicious behavior patterns.

Interaction between Components

There are different research problems that arise from the interactions between

components. For example, Chin et al. [23] examine the interaction of compo-

nents in Android applications in order to identify application communication

vulnerabilities. Their work tries to find whether an Android application is

vulnerable to attacks based on inter-component method calls from malicious

applications. In addition, Chaudhuri [22] and Fuchs et al. [26] create a typed

language to model interactions between Android main components to reason

about the dataflow security properties of the application.

2.2.2 Energy Related Analysis

As it was mentioned before, power consumption is one of the main

problems faced by smartphones. There are different approaches to identify

bottlenecks and bugs related to power consumption. One approach includes

profiling and debugging techniques to discover where Android applications

spend more energy. For instance, Eprof [44] is a fine grained energy profiler

which is capable of finding energy bugs and also capable of point these bugs in

the source code of Android applications. In addition, eCalc [31] and eLens [32]

uses cost functions–they compute the estimated energy cost for each function

based on the type of instruction–to estimate the power consumption of an

15

Android application using execution traces generated from the application.

Another approach is to apply static analysis on Android applications to

check energy policies or protocols from the Android API. In this line, Pathak,

et. al. [42] adapt a reaching definitions dataflow analysis to detect no-sleep

bugs checking if all the acquired wake locks are released through all the possible

paths. Vekris et al. [56] also uses a dataflow analysis to find bugs related to

wake locks using policies based on defined exit points in components lifecycles

where wake locks must be released. Both approaches try to model the order

of callback execution using the components lifecycles but they do not take in

account interactions between components.

2.2.3 Specification Mining

Mining specifications for program verification has become an important

technique to automatically learn API protocols. During the last years a lot of

research has been made in this field [15,27,28,46,50,57,59].

There are two main directions on mining specifications: dynamic anal-

ysis and static analysis. Most of the research done in this area uses a dynamic

analysis approach. However, in order to use dynamic analysis, the application

must be instrumented and then run in order to get dynamic traces from it.

This task can be executed manually or automatically (increase considerably

the complexity of the approach).

On the other hand, specification mining using static analysis does not

need to run the program, but it suffers of problems such as aliasing, infea-

16

sible paths and path exploitation (for big applications in lines of code and

complexity). It can be classified as component-side and client-side [50]. A

component-side approach uses directly the source code of the API, whereas a

client-side approach utilizes client applications of the API.

In this thesis, a client-side static analysis specification mining approach

will be used. The clients will be Android applications obtained from the Google

Play market.

2.2.4 Modeling Event-driven Systems

It was shown that Android is a very dynamic system in which different

components can be taken as entry points and inter-component method calls

can impact the control flow of and Android application. Therefore, in order

to statically analyze Android applications, we have to model this dynamic

behavior to recreate the control flow.

Research has been done on other kind of event-driven systems. For

instance, Nguyen et al. [41] and Cheung et al. [34] focus on modeling Wireless

Sensor Network (WSN) applications. WSN are event-based, concurrent sys-

tems that like Android are not easy to model. Both papers [41] and [34] try

to define an accurate representation of WSNs.

Although, Android and WSNs applications are concurrent and event-

based, they have different behaviors. Therefore, the approach to model An-

droid applications will not be based on the models developed for WSNs.

17

Chapter 3

Mining Energy Specifications (E-Specs) and

Energy Bugs (E-Bugs)

The first approach that is going to be presented in the thesis, is a

intra-component control flow model. In this approach, just the components

lifecycles are taken in account, therefore, the interaction between components

does not have an impact in the control flow of the representation. Moreover,

a static analysis framework to mine energy related specifications in Android

applications is developed. We will use a summary approach applying analysis

to each callback by separated and then composing the results based on the

components lifecycles. The framework is composed by three main phases: the

generation of an intermediate representation of the Android application, the

specification miner and a post-processing phase (see figure 3.1).

3.1 Modeling Intra-Component Control Flow

To model intra-component control flow of Android applications we are

going to use the lifecycles describe in section 2.1 (figure 2.2 shows the lifecycle

for activities and figures 2.3a and 2.3b show the lifecycles for services). These

lifecycles give us a control flow of callbacks for each component, therefore, we

18

Figure 3.1: Framework

can simulate their behavior. For each callback we are going to generate an

ICFG. Theses ICFGs will be the inputs of the specification miner.

3.2 Specification Miner

An inter-procedural, path-sensitive, context-sensitive, value-flow anal-

ysis is implemented in order to mine specifications. This analysis will take an

ICFG of a callback and a seed (which is a class from the Android API) and

generates a set of sequences of methods calls for each different instance of the

seed class found in the application.

The analysis must be path-sensitive since all the possible execution

paths of the application must be explored. By looking at all the execution

paths, we can discover whether there are paths where the specification mined

is broken. This approach has an advantage over testing since it covers all the

code and in testing, there might not be enough test cases to cover all the code.

However, this approach suffers from path exploitation when the application is

19

big in terms of lines of code and complex in terms of possible execution paths.

Therefore, we must apply a mechanism to reduce program space but without

losing precision (see section 3.4).

Another aspect of the analysis is that when recollecting the methods of

the seed API, the analysis must recognize to what particular object instance

the invocation belongs. Therefore, we must keep track of each instance of the

seed class through the program taking in account all the aliases the reference

can has. To solve this problem we have developed a value flow analysis that

tracks the different instances of the given seed class through each path in the

application. This analysis finds the creation of objects of the seed class and

tracks how its value is assigned to different variables through the ICFG. There-

fore, the analysis keeps all the aliases of the instance and use this information

to determine the instance of a particular method call of the seed class.

The result of this analysis must be a set of sequences in which each

sequence represents a list of methods calls of the seed class for a particular

path. Since the input is just a callback of a component, this sequences must be

composed with other sequences. The algorithm developed takes as inputs the

sets of sequences for each callback and the lifecycles of activities, services and

broadcast receivers. Then, it composes the sequences of callbacks of the same

component according to the lifecycle of the component using the information

gathered by the value flow analysis to avoid composing sequences of different

instances.

20

3.3 Post-Processing

After the specification miner finishes, we have specifications for each of

the applications analyzed. We analyzed different versions of the same applica-

tion because we wanted to compare if the specifications were consistent across

all the versions. All the specifications found for one version were compared

against each other version of the same application. In addition, we take all set

of sequences mined for all the versions and build a prefix tree acceptor (PTA).

A PTA is an automaton similar to a tree where every leaf is a accept state and

it is used by algorithms of specification learning such as k-tails FSA [36]. As

future work we can apply different algorithms, such as k-tails FSA, to generate

a final specification for energy related APIs.

3.4 Implementation

3.4.1 Getting Intermediate Representation of Android Applications

The framework described before, takes an intermediate representation

(ICFG) of the application it analyzes. Android applications are packaged in

Android application packages (APK) files which contains the bytecode of the

application (bytecode for the Dalvik VM) and its assets. Since most of the

tools to work on Java applications uses either source code or Java bytecode

for the Oracle JVM, Dex2Jar [7] is used to transform an APK file to a Jar file.

However, we still need an intermediate representation for our Specification

Miner. In order to get an intermediate representation from the Jar file we use

Soot.

21

Soot is a framework that was created for optimizing Java bytecode [54].

It offers four intermediate representations from which we chose Jimple [55].

Jimple is a 3-address code (TAC), stackless intermediate representation. In

addition, since Soot offers also a CallGraph for the application, we can build an

ICFG for each callback of each component which are used by the specification

miner.

3.4.2 Optimizations

Path-sensitive, context-sensitive is a very expensive analysis. We apply

some optimizations to make the analysis scalable. For instance, to reduce the

space of the analysis, we apply a linear marker, which is a path-insensitive

analysis that scan through each statement in the ICFG of the callbacks and

marks the methods that contains method calls of the class under analysis

(seed) and the methods that call these methods. Figure 3.2 shows a CFG of a

simple activity (figure 3.3 shows its source code) for an Android application.

In this control flow graph, we see the implementation of the callback onRe-

sume which creates an object of the class Example. The Example class has the

methods a, b, c, d and e where just a and e have calls of the class PowerMan-

ager.WakeLock (the input seed). In this case, the linear marker goes through

each statement marking all the method that has calls of the seed, the method

obj.a(). Since, the linear marker works inter-procedural, the method obj.d() is

marked as well because it has a call to the method e() which contains calls of

the seed class (see figure 3.3 line 34).

22

Figure 3.2: CFG example for linear marker

3.4.3 Seed Classes from the Android API

The analysis was performed using six different classes from the Android

API as seeds. We focus on classes that perform any kind of lock on components

of the device such as CPU, GPS, Wifi radio, sensors, keyword and the camera.

The seeds we use are the following:

• android.os.PowerManager.WakeLock : the application can acquire a wake

lock on the CPU and even on the screen of the device.

• android.net.wifi.WifiManager.WifiLock : with this lock, the application

can apply a wake lock to the Wifi radio. This is useful for streaming

applications when the device has access to Wifi networks since the power

consumption is reduced significantly (tail energy is comparable, but the

data transfer is faster [17]).

23

1 public class ExampleActivity {
2 protected void onResume () {
3 Button btn = . . . ;
4 Example obj = new Example () ;
5 obj . b () ;
6 obj . a () ;
7 i f (. . .) {
8 obj . c () ;
9 } else {

10 obj . e () ;
11 }
12 . . .
13 }
14 }
15
16 public class Example {
17 PowerManager . WakeLock l P a r t i a l ;
18 PowerManager . WakeLock lSc r e en ;
19 public void a () {
20 l P a r t i a l = PowerManager .
21 newWakeLock (. . .) ;
22 lS c r e en = PowerManager .
23 newWakeLock (. . .) ;
24 l P a r t i a l . a cqu i r e () ;
25 lS c r e en . acqu i r e () ;
26 }
27 public void b () {
28 . . .
29 }
30 public void c () {
31 . . .
32 }
33 public void e () {
34 d () ;
35 }
36 public void d () {
37 i f (l P a r t i a l . i sHe ld ())
38 l P a r t i a l . r e l e a s e () ;
39 }
40 }

Figure 3.3: Source Code example for linear marker

24

• android.location.LocationManager : use to request updates of location

using the GPS or other techniques. If the request of updates is not

removed, then it can keep asking for location updates even when the

application is not been used.

• android.hardware.Camera: used to perform different actions with the

camera. The application can also lock the camera to exclusive use and

has to unlock it when it finishes the action it was doing.

• android.app.KeyguardManager.KeyguardLock : blocks the keyboard dur-

ing the execution of the application. The application has to release the

lock once it has finished the task it wanted to do without the keyboard.

• android.hardware.SensorManager : use to access the different sensors the

device has. After the application finishes using a sensor, it must disable

it [48].

3.5 Experimental Results

The specification miner analysis was applied to 13 applications from

the Google market and a number of different versions of each application. Our

experiments were run on a VM with AMD Opteron 6204 3.30 GHz (two CPUs)

and 64GB of RAM.

Table 3.1 shows the applications we analyze; the number of versions;

the total number of classes, methods and fields (static and instance fields) per

application including all the versions–it is worth to mention that these are

25

approximate values since we are getting these numbers from a Jar file that

was reversed engineered from an obfuscated Dalvik VM bytecode.

Table 3.1: Benchmarks

Applications No. of Versions No. of Classes No. of Methods No. of Fields
Netflix 9 2322 15672 10555
DroidNotify 13 4331 32907 23194
MyTracks 3 1655 11726 6108
PowerManager 3 538 2895 3740
Skype 6 7859 32778 22594
Noled 4 751 3262 3703
WidgetLocker 3 2057 10046 7288
NYTimes 2 826 5854 3021
Missed Call Pro 2 836 6991 1951
Foursquare 3 3273 22059 17671
BLN 2 269 1371 799
UCam Ultra Camera 4 4449 30743 17188
Facebook 8 17793 107099 65132

The specification miner and post-processing phases were applied on

the applications listed before getting acceptable results in terms of scalability.

Table 3.2 shows the results of the specification miner analysis. The column

Common FSM shows the number of finite state machines found that were

present across all the versions. The Total Time column shows accumulate

time in seconds that the specification miner took for all the versions and all

the seeds for each application.

For the majority of the applications, the analysis took less than 3 hours

to run through all the seeds and all the versions. Figure 3.4 shows the relation

between the number of classes per application and the time the analysis took.

With the exception of Noled, the time spent by the analysis increases accord-

ing to the number of classes the application has–there are different factors

26

Table 3.2: General Specification Mining Results

Benchmark No. of
Versions

Unique Specs Common
Specs

Total Time
(seconds)

Netflix 9 4 2 3806
DroidNotify 13 10 2 9392
MyTracks 3 4 4 2211
PowerManager 3 2 0 1605
Skype 6 1 0 4994
Noled 4 5 5 18802
WidgetLocker 3 14 7 1842
NYTimes 2 2 2 916
Missed Call Pro 2 1 1 1244
Foursquare 3 5 3 6086
BLN 2 5 3 606
UCam Ultra Camera 4 23 17 7572
Facebook 8 20 2 14223

that may have contributed to the performance results on Noled such as the

complexity of the application in terms of possible paths.

Figure 3.4: Performance: No. of classes vs. Analysis time

In addition, we found that across multiple versions of the same applica-

27

tion and multiples components of one application, the number of specifications

found for the given seeds does not vary often (they are simple calls to acquire

and release locks on components of the device). The only exception found was

the specifications for the class android.hardware.Camera which can be used

for different tasks.

1 class UIWebViewActivity extends N e t f l i x A c t i v i t y {
2 public void onStart () {
3 stayAwake () ;
4 . . .
5 }
6 public void onStop () {
7 releaseAwakeLock () ;
8 . . .
9 }

10 }
11 class N e t f l i x A c t i v i t y extends Act iv i ty {
12 public void stayAwake () {
13 i f (this . wakeLock != null) {
14 i f (this . wakeLock . i sHe ld ()) {
15 this . wakeLock . r e l e a s e () {
16 }
17 this . wakeLock = null ;
18 }
19 this . wakeLock = p . newWakeLock(getWakeLockFlag () , getLockName ()) ;
20 this . wakeLock . setReferenceCounted (fa l se) ;
21 i f (getLockTimeout () > 0) {
22 this . wakeLock . acqu i r e (60000L) ;
23 }
24 else {
25 this . wakeLock . acqu i r e () ;
26 }
27 }
28 public void releaseAwakeLock () {
29 i f (this . wakeLock . i sHe ld ())
30 this . wakeLock . r e l e a s e () ;

Figure 3.5: Source Code

The main focus of the evaluation of this project was to find whether the

28

1start 2 3
isHeld release

(a) First Specification Mined

1start 2

3

4 5

6

setReferenceCounted

acquire

acquire(long)
isHeld

isHeld

release

(b) Second Specification Mined

Figure 3.6: Example of results

intra-component approach for modeling Android applications was suitable to

perform static analysis and specially specification mining. We found that for

some applications given the logic the programmers used, the intra-component

approach was good enough. For instance, figure 3.5 shows the part of the found

in all the versions of the Netflix Android application use for the experiments.

In this case, our analysis works perfectly mining two different specifications

from the code across the different callbacks of an activity. Figure 3.6a is mined

from the lines 14-17 in 3.5. Since, in the line 19 a new instance of the class

android.os.PowerManager.WakeLock is assign to the variable wakeLock, the

analysis recognizes all the following calls as part of a different instance of the

previous method calls. That is why the specification 3.6b is generated.

In addition, table 3.3 shows the number of false positives found per

29

Table 3.3: False Positives for the Specifications

Application False Positives Total Specs Percentage False Positives
Netflix 1 4 25.00%
DroidNotify 5 10 50.00%
MyTracks 0 4 0%
PowerManager 2 2 100.00%
Skype 1 1 100.00%
WidgetLocker 7 14 50.00%
NYTimes 2 2 100.00%
MissCallPro 1 1 100.00%
Foursquare 3 5 60.00%
BLN 2 5 40.00%
Ucam Ultra Camera 13 23 57.00%
Facebook 13 20 65.00%

application. We discover that most of the causes of false positives and false

negatives were related to threads, inn-accurate given by the value flow (alias-

ing), instances of the seed class under analysis that were used in different

components (inter-component specifications), and callbacks of GUI and sen-

sor event callbacks out of the lifecycles used for each component.

Inter-component specifications

We found that the intra-component approach did not work for some applica-

tions. There are some applications in which instances of the seed class flow

through different components. In other cases, the applications use a helper

class with static fields (including static fields for the wake lock objects) and

static methods that are called through different components. In addition, there

are other callbacks that must be taken in account besides lifecycle callbacks.

For instance, GUI and sensors callbacks are important to take in account in

order to improve the code coverage. Therefore, inter-component specifications

30

and GUI and sensors callbacks must be analyzed in order to improve the ac-

curacy of the results.

Aliasing

Aliasing is one of the main problem during mining specifications on object

oriented languages. Objects under analysis can flow through complex data

structures and keep track of them is a complex task. Therefore, for analysis of

object oriented languages having a precise information about how the objects

flow is important for the accuracy of the results.

Threads

Android applications are concurrent in nature. In Android, every application

runs on its own main thread (called UI thread). If the application tries to

do a task that runs for a considerable amount of time (normally more than 2

seconds), the system will raise a dialog asking the user if he/she wants to close

it or wait–this is called Application Not Responding (ANR) mechanism. That

is why applications normally assign long-time running tasks to other threads

creating false positives and false negatives in our results. Thread analysis is

not the main purpose of this work, therefore, it can be considered as future

work.

3.6 Conclusion

In conclusion, in this chapter an intra-component specification mining

has been developed to analyzed Android applications. We discovered that for

some applications, the intra-component approach was good enough, whereas,

31

for other applications, an inter-component approach is needed to mine specifi-

cations. In addition, we discovered some sources of imprecision in the analysis

that can be tackle as future work.

32

Chapter 4

Building a Representation for Analyzing

Android Applications

4.1 Motivation

As it was mentioned in the previous chapter, the main causes of false

positives and false negatives we discovered during analyzing Android appli-

cations were threads, inaccuracies of value flow or/and points to analysis,

and inter-components specifications (specifications that are found in more

than one component). From the three causes, thread analysis [51], alias-

ing [16, 18, 35, 40, 53] are general static analysis challenges. However, we have

not found a work that tries to model Android applications taking in account

inter-component control flow. Therefore, in this chapter we define an inter-

component approach to analyze Android applications

As a motivating example, figure 4.1 shows a source code found in Droid-

Nofity in which a powermanager wake lock object is instantiated and acquired

in a broadcast receiver. Then, the broadcast receiver starts a service which

performs some job and releases the same wake lock acquired previously. In

this case, the intra-component approach used to model Android applications

and the specification miner will mine two different specifications, one in the

33

broadcast receiver and the other in the service– both mined specifications are

incomplete and therefore are false positives.

1 class CalendarNot i f i cat ionAlarmRece iver . . . {
2 public void onReceive (. . .) {
3 Intent l o c a l I n t e n t = new In tent (paramContext ,
4 Se rv i c e1 . class) ;
5 l o c a l I n t e n t . putExtras (paramIntent . getExtras ()) ;
6 Wake fu l IntentServ ice . sendWakefulWork (
7 paramContext , l o c a l I n t e n t) ;
8 . . .
9 }

10 }
11 class Wakefu l IntentServ ice extends I n t e n t S e r v i c e {
12 public stat ic void sendWakefulWork (Context context ,
13 Intent i n t e n t) {
14 Common. acquirePart ia lWakeLock (context) ;
15 paramContext . s t a r t S e r v i c e (i n t e n t) ;
16 }
17 public onHandleIntent (. . .) {
18 doWakefulWork (paramIntent) ;
19 i f (!Common. isFul lWakelockInUse ())
20 Common. clearWakeLock () ;
21 }
22 }
23 class Se rv i c e1 extends Wakefu l IntentServ ice {
24 . . .
25 }

Figure 4.1: Inter-component specification

4.2 Modeling Inter-Component Control Flow

In this chapter, a model that takes into account both, components

lifecycles and interaction between components is going to be developed. We

should model the behavior of Android applications based on three of its main

components–Activity, Service, BroadcastReceiver–and its interactions. Be-

cause Android primarily is an event-driven system, we model the system using

34

event-driven finite state machines since they help us to represent the knowl-

edge we have from the system–the knowledge is represented by signals or inputs

which trigger actions that change the state of the system [25]. We have studied

the Android system and found signals related with lifecycles and interactions

of the three components mentioned before. We will represent events related

with the system’s environment such as graphical user interface events (GUI),

sensor events and others as external signals. In addition, exceptional events,

such as system out of memory, are categorize as external signals. Internal sig-

nals are represented by inter-component method calls which basically start an

interaction between two components in an Android application: the caller and

the callee. For instance, startActivity launches an activity to the foreground.

Another example is how a component can use the method call sendBroadcast

to interact with broadcast receivers. Moreover, in this document we state

certain constraints that are applied to these calls.

4.3 Modeling Android using Event-driven Finite State
Machines

We model the Android system (we are going to use Android from now

on to refer the Android system) as a control system that uses input events

(signals) to determine the behavior of the application. We use event-driven

finite state machines to model the behavior of three of the four main component

in Android. The signals are organized in two categories: internal and external

signals.

35

4.3.1 External Signals

We define external signals as events generated by the environment of

an Android application and not an event made directly by the application. For

instance, when the user tabs the home button in an Android phone, the system

stops the current application (activity) and triggers the home application–tabs

to the back button is also taken as external signal. Another external signal

is when the system ran out of memory and release some memory sometimes

releasing activities and services that are kept in memory affecting the lifecycle

of these components. In addition, all events related with sensors and GUI are

categorized as external. All these external signals have a direct impact in the

lifecycles of components.

4.3.2 Internal Signals

In contrast to external signals, internal signals are generated by method

calls found in the application’s code. We consider, as internal signals, all

the methods calls that affects the behavior of components in Android. We

categorize inter-component method calls (methods that allow the interaction

between two components) as internal signals since they also affect the behavior

of components. For instance, when an activity wants to do a long-running task

in the background, the activity can call a service to do that job. The activity

can uses inter-component calls binService or startService which triggers actions

to create and run the service. The following list, show the inter-component

method calls we analyzed to build our model:

36

• for activities, the methods startActivity, startActivityIfNeeded and star-

tActivityForResult can be used to call activities.

• for services, Android defines the methods startService, stopService, bind-

Service, unbindService.

• to call broadcast receivers, the Android API has sendBroadcast and

sendOrderedBroacast (there are other variants of these two methods that

does not have an effect in our models).

In the following sections, we will define what is the behavior of each

method call and what constraints these calls have. In addition to inter-

component method calls, we also consider method calls that belong to the

component class which affect its lifecycle. For instance, in activities, when the

method finish is called, the system stops the activity immediately. Moreover,

for services the method stopSelf stops the service after it is called.

4.3.3 How External and Internal Signals are treated in our model

First of all, our main goal is to build an intermediate representation

of Android applications. Therefore, our model will take in account all the

possible execution paths the applications can have. In that regard, we will

assume that external signals will be send, contrary to internal signals that

must be explicit in the application’s code.

37

4.4 Models for Components

To model the behavior the three components mentioned and their in-

teractions, we have to identify which external and internal signals affect their

behavior. Following, models for activities, services and broadcast receivers are

presented.

4.4.1 Modeling Activities

Activities are the main components in Android applications. They

normally provide an user interface and are the main entry points for an appli-

cation. Activities can be triggered by internal and external signals. We also

have to take in account that these signals has different behaviors depending

on the state of the activity.

Activities can be activated and re-activated. For instance, when an

user tabs on the launcher for an application and the application has not been

run before (it is not in memory), the system will look for the main activity

declared in the AndroidManifest.xml file and launch it. If the application is

going to be accessed again (now the application is in memory), the system

will restart that last activity used. The following models show these and more

cases for activities (section 2.1).

Launch Activity. As we said before, the main activity declared in the An-

droidManifest.xml file is launched when the user tabs the launcher icon of the

application. The other activities can be launched using the inter-component

38

call startActivity, startActivityIfNeeded or startActivityForResult. Figure 4.2

shows the behavior of an activity when it is launch as main activity or using

startActivity from other components different of activities–services and broad-

cast receivers. Once the activity is Active, it can receive events related to

GUI, sensors. It can also be relaunched (see General Model 4.4.1.1 for more

information).

Constraint: when the startActivity method is called from another component,

which is not an activity, the intent must have the flag FLAG ACTIVITY NEW TASK

[1].

Initial Active
launch

event, relaunch

Figure 4.2: Activity Launch Task State Machine

When an activity is launched from another activity, the system will

pause the caller activity, then launch the callee activity and ultimately stop

the caller activity (see figure 4.3).

Active:Callerstart Paused:Caller Active:Callee Stopped:Caller
pause(Caller) launch(Callee) stop(Caller)

Figure 4.3: startActivity from Activity

Pause and Stop Activity. When an activity is overshadowed by another

39

activity, but it is still visible, the system just pauses it. Once, the second

activity is closed, the system executes the action resume to active the previous

activity. If the user is leaving the application (because of tab on the home

button for example), the system will execute the actions pause and stop in

sequence. In addition, the finish method in activities stop them. Therefore, if

this method is called when the activity is active (or in process to be active),

the system will execute the stop action immediately.

Active Paused

Stopped

pause

stop
stop

resume

Figure 4.4: Pause and Stop Activity

Restart Activity. Once an activity is in memory (stopped), every time it is

called again, the system will execute the restart action. This action is similar

to launch, but it will not execute the callback onCreate. Instead it executes

the callback onRestart (see section 4.4.1.1).

Active Stopped
restart

Figure 4.5: Restart Activity

Destroy Activity. If the system runs out of memory, it can release some

40

components from memory including activities. An activity can be released

just if it is in the stopped state [1]. When the activity is released from memory,

the system executes the action destroy, which executes the callback onDestroy

in the activity.

Stopped Destroyed
destroy

Figure 4.6: Destroy Activity

4.4.1.1 General Model

Figure 4.7 shows a general model of the behavior of activities. This is a

composed model of all the previous models presented. Following, each of the

states and actions in the finite state machine are described.

Initialstart Active Paused

Stopped

launch pause

event, relaunch

stop
stop

resume

destroy

restart

Figure 4.7: General Model for Activity

Description of states

41

• Initial: the activity has not been called or it was released from memory.

• Active: the activity is visible and allows interaction with an user.

• Paused: the activity is paused by different reasons. One is as part of its

life-cycle. When the activity is going to be stopped, the system pauses

the activity first and then stop it. The other reason is when another

activity has opaque the current activity, although it is still visible [1].

• Stopped: the activity is not visible. There is another activity that is

completely in the foreground. However, the system keeps the activity in

memory.

Description of actions

• launch: this action can be triggered by different signals. For instance,

if the activity is declared in the AndroidManifest.xml file as the main

activity, this activity will be launch at the time the user access the

application (external signal). The other signal is when the activity

is started using the inter-component method call startActivity (inter-

nal signal). The launch action has the following sequence of callbacks:

onCreate→ onStart→ onResume.

• event: once the activity is active, it can handle different events such

as graphical user interface (GUI) events, sensor events and others. This

action will have just one method associate and it will be the handler

associate with the event (e.g. onClick for buttons).

42

• relaunch: the action is normally triggered when the user change the

orientation of the phone. When the orientation changes, the system will

pause, stop, destroy the activity and then launch it again. Therefore

the sequence of callbacks will be the following: onPause → onStop →

onDestroy → onCreate→ onStart→ onResume (there are other call-

backs executed which we do not take in account for our model).

• pause: normally when the activity is going to be stopped, the system

will trigger the action pause first. This events can be caused because of

different signals such as the user clicks that home button or back button.

In addition, if there is a startActivity call, then the system pauses the

activity before the new activity is launched (see figure 4.3). The pause

action just has one callback associated, onPause.

• stop: there are two states where the action stop can be triggered from.

If the method finish is called within the activity, then it will close the

activity and triggers the stop action. In addition, if the method is called

in any of the launch callbacks, it will stop the execution of the following

callbacks in the action and it will trigger the action stop immediately.

The other state the action stop can be triggered from Paused. This will

happen as part of the activity’s lifecycle when an user click the back

or the home button and the system puts in the background the current

activity (there are another scenarios). It is worth to mention that if the

pause action is triggered because of a startActivity signal, then the stop

43

action will not be triggered until the started activity has been launched.

The callback associate to the stop action is onStop.

• resume: if the activity loses focus to another activity but it is still

visible, the system will pause the activity. Once it recovers the focus,

the system will trigger the action resume to active the activity again.

This action executes the callback onResume.

• restart: when the activity is stopped but is still in memory, the sys-

tem does not have to create it again. Therefore, when the activity is

accessed again, the system restart the activity instead of launch it again.

The action execute the following sequence of callbacks: onRestart →

onStart→ onResume.

• destroy: this action will be triggered when the system destroys the ac-

tivity held to release memory. The activity can be killed just when the

activity is in the state Stopped [1].

4.4.2 Modeling Services

In contrast to activities, which normally offer a user interface to interact

with the user, a service is used for long-running tasks that are executed in the

background [4]. Services can be run just using inter-component calls (internal

signals). Following, all the inter-component calls related with services are

explained.

44

startService. Figure 4.8 shows the model for calling startService when the

service (callee) is not created (running). After the service is created, all the

startService calls will just trigger the action start.

Initial Created Started
create start

start

Figure 4.8: startService when service is not running

In case the service has been bound, a call to the method startService

will change the state of the service to started and bound. Figure 4.9 shows this

behavior.

Bound StartedBound
start

star,bind

Figure 4.9: startService when service is bound

stopService. In case there is a stopService inter-component call, the callee

service will be stopped–this call just triggers the action stop (see model in

figure 4.14).

45

Started Initial
destroy

Figure 4.10: stopService when service is Started

StartedBound Bound
destroy

Figure 4.11: stopService when service is Started and Bound

Constraints: the service must be started or started and bound.

bindService. Figure 4.12 shows the model of the behavior when the inter-

component method call bindService is executed and the service has not been

created. Once the service is bound, all the calls bindService will not affect the

state of the component.

Initialstart Created Bound
create bind

bind

Figure 4.12: bindService when service is not running

If the service has been started using the inter-component call start-

Service and the call bindService is executed, the system will trigger the bind

action and the service will pass to the state started and bound (see figure 4.13).

46

Startedstart StartedBound
bind

bind

Figure 4.13: bindService when service is started

Constraints: broadcast receivers cannot bind a service because the life span

of a broadcast receiver is too short. It is recommendable that if a broadcast

receiver wants to work with services, it must call startService. Another con-

straints is that there must be an unbindService call for each component that

bind the service. For example, if an activity binds a service, and then it is

stopped without unbinding the service, the service will remain running but

without interacting with the activity– if the programmer wants that behavior,

it is better to use startService.

unbindService In case there is a unbindService inter-component call, the

callee service will be unbound–this call just triggers the action unbind (see

model in figure 4.14). If there is no other component bound to the service, the

system will trigger the action destroy.

Constraints: the service must be bound or started and bound.

47

4.4.2.1 General Model

The general model is the composition of all the model described in the

previous section. Following, the description of each state and action in this

model.

Initial Created Started

Bound

Unboud

StartedBound

create start

bind

destroy event, start

bind,rebind

event, bind

start

unbinddestroy

rebind,bind

unbind

destroy

start, bind, event

Figure 4.14: General Model for Service

Description of states

• Initial: the service has not been called or has been released from mem-

ory.

• Created: the service was created and it is in memory.

• Started: the service is running in the background until the inter-component

48

call stopService is executed or the method stopSelf is called. The service

is in this state after a startService inter-component call has been made.

• Bound: the service is bound to another component through the inter-

component call bindService. The service will be running until the com-

ponent that bound it call the inter-component call unbindService. It is

worth to mention that multiple components can bind a service at the

same time. Therefore, the service will run until the last component that

bound it unbind it.

• Started and Bound: the service has either started first and then bound

or bound first and then started. In this case the service will be maintain

alive by two ways. Until the actions stop and unbind (in either order see

figure 4.14) are triggered, the service will not be destroyed.

• Unbound: the service is unbound from the component that bound it.

Since the service can be still running, the same component can bind

it again– the rebind action can also be triggered in case the onUnbind

callback returns true.

Description of actions

• create: when a service is called, either by the inter-component calls

startService or bindService, if the service has not been called before, the

system will create the service first. This action will execute the callback

onCreate on the service.

49

• start: this action is triggered by the inter-component call startService.

The action will execute the callback onStarCommand. If the service is an

IntentService, then the onHandleIntent callback will be executed after

onStartCommand.

• event: this action is triggered by any event that is handle in the service.

For instance, a service can register handlers for network notifications.

• bind: inter-component calls of bindService will trigger this action. As it

was mentioned before, the bindService call first check if the system was

created, and then triggers this action. This action executes the callback

onBind.

• unbind: this action is triggered by the inter-component call unbindSer-

vice. This action executes the callback onUnbind.

• rebind: if the onUnbind callback returns true, the next time a com-

ponent tries to bind the same service again, the system will trigger the

action rebind instead of bind.

• destroy: this action can be triggered by a call of the method stopSelf or

an inter-component call stopService. This action executes the callback

onDestroy. In addition, after the unbind action if there is no other com-

ponent bound to the service, the system will execute the action destroy.

The are external signals that can trigger the action destroy. For instance,

when the system runs out of memory, it can destroy services that are

50

running. In addition, users can stop services from the configuration of

the phone. Therefore, we will assume this action, even if there is not an

stopService or stopSelf call.

4.4.3 Modeling Broadcast Receivers

Broadcast receivers just have one action, receive The action receive

executes the callback onReceive. Once the onReceive callback finishes, the

broadcast receiver is no longer active. A component can communicate with

broadcast receivers by sending messages using the methods sendBroadcast and

sendOrderedBroadcast (there are other verions of these methods which make

no difference in our model). These two methods can send broadcast messages

to more than one broadcast receiver because the intent defined can match zero

o more components. However, they have different behaviors in the order of

execution.

Broadcast receivers can be also called by the system. When a broadcast

receiver is declared with the action android.intent.action.BOOT COMPLETED

in the AndroidManifest.xml file, the action receive will be triggered when the

system boots. Figure 4.15 shows the model for broadcast receivers.

startstart stopped
receive

Figure 4.15: BroadcastReceiver Task State Machine

As we said, sendBroadcast and sendOrderedBroadcast are used to com-

municate with broadcast receivers. Here we explain their behavior:

51

sendBroadcast. This inter-component call will execute the action receive for

each component that match the intent. The order of execution of the broad-

cast receivers will be random.

sendOrderedBroadcast. In case the call is sendOrderedBroadcast, the sys-

tem will execute the receive action for each component in order. The order is

ascending based on the property priority defined in the AndroidManifest.xml

file for each broadcast receiver. In case two or more broadcast receivers have

the same priority, the order for those components will be random.

4.5 Representation

In the previous section, the behavior of Android applications, and

specifically of activities, services and broadcast receivers, was describe using fi-

nite state machines. The main goal of this work is to generate an intermediate

representation that takes component’s lifecycle and inter-component control

flow in account. In this section, an intermediate representation for Android

applications is presented. This representation is built using the previous mod-

els and the source code of the application. Definition 1 describes an Android

Inter-component Graph (AIG).

Definition 1. An Android Inter-component graph (AIG) for an application

a, is a directed graph G =< N ;E > where N is a set of nodes that represents

callback components and E is the set of edges that represent the control flow

between callback components.

52

4.6 Construction of the AIG

The following steps define how to build the AIG for an application:

1. Find the main activity in the AndroidManifest.xml file.

2. Build the startActivity model using the main activity (section 4.4.1).

(a) At the end of each transition in the model, all the internal signals

found in the action (inter-component method calls found in the call-

backs that belong to the action) associated with the transition are

processed. This process consist on finding what component(s) the

inter-component method call targets and the model for the inter-

component call. Then, this model is built recursively using the

target component(s). It is worth to mention that the constraints

mention in the previous section (4.4. are checked for any violation.

(b) Lastly, change the state of the target component(s) based on its

current state (the analysis keeps the state of each component) and

the inter-component call. For example, if a service A has not been

called, its state is Initial. After an startService inter-component

method call that targets service A, the state of the component

change to Started.

Note: the models must be modified in order to take in account external

signals. Therefore, in models such as startActivity, there must be transitions

53

from the Active state to Paused state, and so on so for following the external

signals (same as the general model showed in figure 4.7).

1 class MainActivity extends Act iv i ty {
2 . . .
3 public void onStart () {
4 Intent i = new In tent (this , S e rv i c e1 . class) ;
5 s t a r t S e r v i c e (i) ;
6 . . .
7 }
8
9 public void onPause () {

10 Intent i = new In tent (this , S e rv i c e1 . class) ;
11 s t o p S e r v i c e (i) ;
12 . . .
13 }
14 . . .
15 }

Figure 4.16: Activity used to build an AIG

Lets illustrate the algorithm with an example. Figure 4.16 shows the

main activity of an application. First, the startActivity model (figure 4.7) is

built using MainActivity. In the startActivity model, there is one transition

which is that launch task. The analysis inspect the source code of the three

callbacks that belong to the launch task and also add edges between this

callbacks (following the order in the lifecycle of the particular component that

the callback belongs). When the analysis finishes with the launch task, the

state of the MainActivity is change to Active. Moreover, in the launch task,

an startService method call was found targeting Service1. The correspondent

model found is built recursively using the component Service1. An edge from

the state Active of MainActivity to the state Initial of Service1 and the state

of Service1 is change to Started. Then, the next transitions in the model

54

are executed. When the pause action finishes, the state of MainActivity is

change to Paused. Then, since in the callback onPause there is the inter-

component method call stopService, the stopService model must be executed

on Service1 –it is worth to mention that there is not any violation of constraints

in this example since the state of Service1 was Started. An edge from the state

Paused state of MainActivity to the Started state of Service1 is added. Then,

the state of the Service1 is changed to Initial.

After the algorithm finishes its execution, an AIG must be generated.

Figure 4.17 shows the resulting AIG. Virtual nodes representing the state of

the components are added to reduce the complexity of the analysis.

4.7 Experimental Results

From the experiments, we wanted to evaluate three things: the scala-

bility of building the graph, accuracy in terms of code coverage in the graph

against the total number of application’s components, and check if any appli-

cation had violations of model constraints. We ran the implementation of our

algorithm against eight applications of the Google market. Table 4.1 shows

the general results of the analysis.

Since, the analysis performed to build the AIG is a path-sensitive anal-

ysis, we wanted to measure the performance of the analysis. After applying

optimizations to the algorithm (the same optimizations applied for the specifi-

cation miner), we could reach scalable results. For most of the applications it

took less than a minute to build the complete graph (see table 4.1). Therefore,

55

Figure 4.17: Example of an AIG

Table 4.1: Inter-component analysis results

Application No. of classes Activities Services Receivers Total Coverage Time (s)
NoLed 1.5.4 189 2/6 8/10 17/17 27/33 81.00% 70
Sipdroid 2.7 429 7/23 3/3 12/12 23/38 53.00% 396
BLN 1.75 135 4/4 3/3 4/4 11/11 100.00% 30
VLC 2012.011 531 7/14 1/1 3/3 11/18 61.00% 34
MyTracks 1.15 542 4/13 1/1 1/1 5/10 33.00% 38
Skype 1313 1/1 1/1 1/1 3/3 100.00% 34
NYTimes 1.2 394 2/6 1/1 0/1 3/8 38.00% 25

56

we consider the our algorithm can be used for biggest applications.

In addition, we measure the number of components covered versus the

number of total components on the application. The average coverage was

of 67%, having over an 80% coverage in three of the eight benchmarks. The

results show that our algorithm had a good coverage on services and broadcast

receivers having an average coverage of 95%, whereas, activities had a lower

percentage of coverage. We attribute the main cause of false negatives to that

in some cases the analysis could not identify which components were supposed

to be activated in the inter-component method call (the Intent object was

not identify). In some cases, applications use helper functions to create the

intents. For example, the class org.sipdroid.sipua.ui.Receiver in Sipdroid 2.7

uses a helper function createIntent to generate all the intents to start activities

(see figure 4.18). This causes our analysis, an intra-procedural value flow, to

not find the intent used in the inter-component call.

1 stat ic In tent c r e a t e I n t e n t (Class<?>c l s) {
2 Intent s t a r t A c t i v i t y = new In tent () ;
3 s t a r t A c t i v i t y . s e t C l a s s (mContext , c l s) ;
4 s t a r t A c t i v i t y . s e t F l ag s (In tent .FLAG ACTIVITY NEW TASK) ;
5 return s t a r t A c t i v i t y ;
6 }

Figure 4.18: Sipdroid 5.7 helper function to create intents

Another aspect that the analysis checked during building the graph,

was whether there were any kind of violations of the model constraints de-

fined in the section 4.4. One of these constraints was that broadcast receivers

cannot bind or unbind services (see section 4.4.2). The official documentation

57

emphatically mentions that services can be bound just by services, activities

and content providers [4]– failing this constraint can add non-deterministic

behavior to the application. We found that DroidNotify contains method calls

bindService and unbindService inside a broadcast receiver, violating this con-

straint.

4.8 Conclusion

In conclusion, in this chapter an inter-component model used to gener-

ate an intermediate representation of Android applications is presented. More-

over, we implemented an algorithm that generates an AIG of Android appli-

cations and run it against eight applications from the Google market. The

results show that the analysis has high coverage of the whole application when

the intent objects are well recognized.

58

Chapter 5

Conclusions and Future Work

In conclusion, two approaches to model Android applications are ex-

pected to be developed: Mining Energy Specifications (E-Specs) and Energy

Bugs (E-Bugs) and Building a Representation for Analyzing Android Applica-

tions. The first approach uses the Android components lifecycles to define a

control flow of Android applications. We test this approach applying a spec-

ification miner to check if the representation is enough to find energy related

bugs. We proved our hypothesis that inter-component interactions between

components have impact in the control flow of Android applications and that

just taking the Android components lifecycles is not enough to analyze Android

applications. That is why, in the second project a representation of Android

applications is defined taking in account both, Android components lifecycles

and the interaction between components. We studied the behavior of Android

applications in order to model the system. We use this model to generate an

Android Inter-component Control Flow Graph of Android applications. Our

implementation had 67% of code coverage against eight applications from the

Google Market and 100% on two of them.

The results for both, specification miner and the AIG builder, are lim-

59

ited to in-accuracies of concurrency code and aliasing. Therefore, thread anal-

ysis and a better value flow and/or points to analysis can be added to improve

the results. Moreover, the graph representation developed in chapter 4 can be

used for other analysis including specification mining and also for testing.

60

Bibliography

[1] Android activities. http://developer.android.com/guide/components/

activities.html.

[2] Android developers - android activations. https://plus.google.com/

108967384991768947849/posts/jHLD6HTfx9U.

[3] Android fundamentals. http://developer.android.com/guide/components/

fundamentals.html.

[4] Android services. http://developer.android.com/guide/components/

services.html.

[5] Android tasks and back stack. http://developer.android.com/guide/

components/tasks-and-back-stack.html.

[6] Application programming interface. http://en.wikipedia.org/wiki/

Application_programming_interface.

[7] dex2jar - tools to work with android .dex and java .class filess. http:

//code.google.com/p/dex2jar/.

[8] Email application partial wake lock. https://code.google.com/p/

android/issues/detail?id=9307.

61

[9] Findbugs. http://findbugs.sourceforge.net/.

[10] Jlint. http://jlint.sourceforge.net/.

[11] Number of available android applications. http://www.appbrain.com/

stats/number-of-android-apps.

[12] Pending intents. http://developer.android.com/reference/android/

app/PendingIntent.html.

[13] Moutaz Alazab, Veelasha Monsamy, Lynn Batten, Patrik Lantz, and

Ronghua Tian. Analysis of malicious and benign android applications.

In Distributed Computing Systems Workshops (ICDCSW), 2012 32nd In-

ternational Conference on, pages 608–616. IEEE, 2012.

[14] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, vol-

ume 5, pages 1–19. ACM, 1970.

[15] Glenn Ammons, Rastislav Bod́ık, and James R Larus. Mining specifica-

tions. In ACM Sigplan Notices, volume 37, pages 4–16. ACM, 2002.

[16] Lars Ole Andersen. Program analysis and specialization for the C pro-

gramming language. PhD thesis, University of Cophenhagen, 1994.

[17] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkatara-

mani. Energy consumption in mobile phones: a measurement study and

implications for network applications. In Proceedings of the 9th ACM

62

SIGCOMM conference on Internet measurement conference, pages 280–

293. ACM, 2009.

[18] Rastisalv Bod́ık and Sadun Anik. Path-sensitive value-flow analysis. In

Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, pages 237–251. ACM, 1998.

[19] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and

Ahmad-Reza Sadeghi. Xmandroid: A new android evolution to mitigate

privilege escalation attacks. Technische Universität Darmstadt, Technical

Report TR-2011-04, 2011.

[20] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-

Reza Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation

attacks on android. In 19th Annual Network & Distributed System Secu-

rity Symposium (NDSS), volume 17, pages 18–25, 2012.

[21] Patrick PF Chan, Lucas CK Hui, and SM Yiu. Droidchecker: analyzing

android applications for capability leak. In Proceedings of the fifth ACM

conference on Security and Privacy in Wireless and Mobile Networks,

pages 125–136. ACM, 2012.

[22] Avik Chaudhuri. Language-based security on android. In Proceedings

of the ACM SIGPLAN fourth workshop on programming languages and

analysis for security, pages 1–7. ACM, 2009.

63

[23] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner.

Analyzing inter-application communication in android. In Proceedings

of the 9th international conference on Mobile systems, applications, and

services, pages 239–252. ACM, 2011.

[24] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David

Wagner. Android permissions demystified. In Proceedings of the 18th

ACM conference on Computer and communications security, CCS ’11,

pages 627–638, New York, NY, USA, 2011. ACM.

[25] Thomas Wagner Peter Wolstenholme Ferdinand Wagner, Ruedi Schmuki.

Modeling Software with Finite State Machines: A Practical Approach.

Auerbach Publications, 2006.

[26] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. Scandroid: Auto-

mated security certification of android applications. Manuscript, Univ.

of Maryland, http://www. cs. umd. edu/˜ avik/projects/scandroidascaa,

2009.

[27] Mark Gabel and Zhendong Su. Javert: fully automatic mining of gen-

eral temporal properties from dynamic traces. In Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of software en-

gineering, pages 339–349. ACM, 2008.

[28] Vinod Ganapathy, David King, Trent Jaeger, and Somesh Jha. Mining

security-sensitive operations in legacy code using concept analysis. In

64

Proceedings of the 29th international conference on Software Engineering,

pages 458–467. IEEE Computer Society, 2007.

[29] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic

detection of capability leaks in stock android smartphones. In Proceed-

ings of the 19th Annual Symposium on Network and Distributed System

Security, 2012.

[30] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian

Jiang. Riskranker: scalable and accurate zero-day android malware de-

tection. In Proceedings of the 10th international conference on Mobile

systems, applications, and services, pages 281–294. ACM, 2012.

[31] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Es-

timating android applications’ cpu energy usage via bytecode profiling.

In Green and Sustainable Software (GREENS), 2012 First International

Workshop on, pages 1–7. IEEE, 2012.

[32] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Es-

timating mobile application energy consumption using program analysis.

In Proceedings of the 35th International Conference on Software Engi-

neering, 2013.

[33] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, Junbum Shin, and SWRD

Center. Scandal: Static analyzer for detecting privacy leaks in android

65

applications. In Proceedings of the Workshop on Mobile Security Tech-

nologies (MoST), in conjunction with the IEEE Symposium on Security

and Privacy, 2012.

[34] Zhifeng Lai, SC Cheung, and WK Chan. Inter-context control-flow and

data-flow test adequacy criteria for nesc applications. In Proceedings

of the 16th ACM SIGSOFT International Symposium on Foundations of

software engineering, pages 94–104. ACM, 2008.

[35] Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Extending and

evaluating flow-insenstitive and context-insensitive points-to analyses for

java. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering, pages 73–79. ACM,

2001.

[36] David Lo and Siau-Cheng Khoo. Quark: Empirical assessment of automaton-

based specification miners. In Reverse Engineering, 2006. WCRE’06.

13th Working Conference on, pages 51–60. IEEE, 2006.

[37] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:

statically vetting android apps for component hijacking vulnerabilities.

In Proceedings of the 2012 ACM conference on Computer and communi-

cations security, pages 229–240. ACM, 2012.

[38] Zheng Lu and Supratik Mukhopadhyay. Model-based static source code

analysis of java programs with applications to android security. In Com-

66

puter Software and Applications Conference (COMPSAC), 2012 IEEE

36th Annual, pages 322–327. IEEE, 2012.

[39] Atif M Memon, Mary Lou Soffa, and Martha E Pollack. Coverage cri-

teria for gui testing. In ACM SIGSOFT Software Engineering Notes,

volume 26, pages 256–267. ACM, 2001.

[40] Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized

object sensitivity for points-to analysis for java. ACM Transactions on

Software Engineering and Methodology (TOSEM), 14(1):1–41, 2005.

[41] Nguyet Nguyen and Mary Lou Soffa. Program representations for testing

wireless sensor network applications. In Workshop on Domain specific

approaches to software test automation: in conjunction with the 6th ES-

EC/FSE joint meeting, pages 20–26. ACM, 2007.

[42] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy

spent inside my app?: fine grained energy accounting on smartphones with

eprof. In Proceedings of the 7th ACM european conference on Computer

Systems, EuroSys ’12, pages 29–42, New York, NY, USA, 2012. ACM.

[43] Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and Samuel P Midkiff.

What is keeping my phone awake?: characterizing and detecting no-sleep

energy bugs in smartphone apps. In Proceedings of the 10th international

conference on Mobile systems, applications, and services, pages 267–280.

ACM, 2012.

67

[44] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff.

What is keeping my phone awake?: characterizing and detecting no-sleep

energy bugs in smartphone apps. In Proceedings of the 10th international

conference on Mobile systems, applications, and services, MobiSys ’12,

pages 267–280, New York, NY, USA, 2012. ACM.

[45] Dewayne E Perry and W Michael Evangelist. An empirical study of soft-

ware interface faultsan update. In Proceedings of the Twentieth Annual

Hawaii International Conference on Systems Sciences, volume 2, pages

113–126, 1987.

[46] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan.

Static specification inference using predicate mining. ACM SIGPLAN

Notices, 42(6):123–134, 2007.

[47] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno,

Helen J Wang, and Crispin Cowan. User-driven access control: Rethink-

ing permission granting in modern operating systems. In Security and

Privacy (SP), 2012 IEEE Symposium on, pages 224–238. IEEE, 2012.

[48] Android Sensor. http://developer.android.com/reference/android/

hardware/SensorManager.html.

[49] Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Automated static code

analysis for classifying android applications using machine learning. In

Computational Intelligence and Security (CIS), 2010 International Con-

ference on, pages 329–333. IEEE, 2010.

68

[50] Sharon Shoham, Eran Yahav, Stephen J Fink, and Marco Pistoia. Static

specification mining using automata-based abstractions. Software Engi-

neering, IEEE Transactions on, 34(5):651–666, 2008.

[51] Nishant Sinha and Chao Wang. Staged concurrent program analysis. In

Proceedings of the eighteenth ACM SIGSOFT international symposium

on Foundations of software engineering, pages 47–56. ACM, 2010.

[52] Stefan Staiger. Static analysis of programs with graphical user interface.

In Software Maintenance and Reengineering, 2007. CSMR’07. 11th Eu-

ropean Conference on, pages 252–264. IEEE, 2007.

[53] Mirko Streckenbach and Gregor Snelting. Points-to for java: A general

framework and an empirical comparison. Technical report, Technical

report, U. Passau, 2000.

[54] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. Soot - a java bytecode optimization frame-

work. In Proceedings of the 1999 conference of the Centre for Advanced

Studies on Collaborative research, CASCON ’99, pages 13–. IBM Press,

1999.

[55] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java byte-

code for analyses and transformations, 1998.

[56] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. To-

wards verifying android apps for the absence of no-sleep energy bugs. In

69

Proceedings of the 2012 USENIX conference on Power-Aware Computing

and Systems, pages 3–3. USENIX Association, 2012.

[57] Westley Weimer and George C Necula. Mining temporal specifications

for error detection. In Tools and Algorithms for the Construction and

Analysis of Systems, pages 461–476. Springer, 2005.

[58] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-

Ping Wu. Droidmat: Android malware detection through manifest and

api calls tracing. In Information Security (Asia JCIS), 2012 Seventh

Asia Joint Conference on, pages 62–69. IEEE, 2012.

[59] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and

Manuvir Das. Perracotta: mining temporal api rules from imperfect

traces. In Proceedings of the 28th international conference on Software

engineering, pages 282–291. ACM, 2006.

[60] Zhemin Yang and Min Yang. Leakminer: Detect information leakage

on android with static taint analysis. In Software Engineering (WCSE),

2012 Third World Congress on, pages 101–104. IEEE, 2012.

[61] Zhibo Zhao and Fernando C Colon Osono. trustdroid: Preventing the

use of smartphones for information leaking in corporate networks through

the used of static analysis taint tracking. In Malicious and Unwanted

Software (MALWARE), 2012 7th International Conference on, pages 135–

143. IEEE, 2012.

70

